Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 46(2): 194-206, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34964139

RESUMO

BACKGROUND: Individuals with alcohol use disorder (AUD) exhibit a disruption of social behavior and dysregulation of oxytocin signaling in the brain, possibly reflecting decreased activation of oxytocin receptors (OxTRs) in reward pathways in response to social stimuli. We hypothesize that daily binge ethanol intake causes a deficit in social reward and oxytocin signaling in the ventral tegmental area (VTA). METHODS: After 9 weeks of daily binge ethanol intake (blood ethanol concentration >80 mg%), OxTR-cre mice underwent conditioned place preference for social reward. Separate groups of mice were tested for the effects of binge ethanol on voluntary social interactions, food reward, locomotion, and anxiety-like behaviors. A subset of mice underwent transfection of OxTR-expressing VTA neurons (VTAOxtr ) with a light-sensitive opsin, followed by operant training to respond to light delivered to VTA. RESULTS: Ethanol-naïve male mice increased the time spent on the side previously paired with novel mice while ethanol-treated mice did not. Binge ethanol did not affect conditioned place preference for food reward in males, but this response was weakened in ethanol-treated females. Ethanol treatment also caused a sex-specific impairment of voluntary social interactions with novel mice. There were minimal differences between groups in measures of anxiety and locomotion. Ethanol-naïve mice had significantly greater operant responding for activation of VTAOxtr than sham-transfected mice but ethanol-treated mice did not. There was no difference in the number of VTAOxtr after binge ethanol. CONCLUSIONS: Daily binge ethanol causes social reward deficits that cannot be explained by nonspecific effects on other behaviors, at least in males. Only ethanol-naïve mice exhibited positive reinforcement caused by activation of VTAOxtr while daily binge ethanol did not alter the number of VTAOxtr in either males or females. Thus, subtle dysregulation of VTAOxtr function may be related to the social reward deficits caused by daily binge ethanol.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Ocitocina/metabolismo , Transtornos do Comportamento Social , Animais , Feminino , Humanos , Masculino , Camundongos , Recompensa , Fatores Sexuais , Área Tegmentar Ventral/efeitos dos fármacos
2.
Alcohol Clin Exp Res ; 44(9): 1791-1806, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767774

RESUMO

BACKGROUND: Microglia are the resident immune cells in the brain where they play essential roles in the development and maintenance of physiological functions of this organ. Aberrant activation of microglia is speculated to be involved in the pathogenesis of a variety of neurological disorders, including alcohol use disorders. Repeated binge ethanol (EtOH) consumption can have a profound impact on the function and integrity of the brain resulting in changes in behaviors such as withdrawal and reward. However, the microglial molecular and cellular pathways associated with EtOH binge consumption remain poorly understood. METHOD: In this study, adult C57BL/6J male and female mice were subjected daily to a gelatin-based drinking-in-the-dark voluntary EtOH consumption paradigm (3 h/d for 4 months) to characterize EtOH consumption and withdrawal-associated and anxiety-like behaviors. Brain microglia were isolated at the end and analyzed for protein expression profile changes using unbiased mass spectrometry-based proteomic analysis. RESULTS: Both male and female mice consistently consumed binge quantities of EtOH daily, resulting in blood EtOH levels > 80 mg/dl measured at the end of the 3-hour daily consumption period. Although female mice consumed a significantly greater amount of EtOH than male mice, EtOH withdrawal-associated anxiety-like behaviors measured by marble-burying, light-dark box, and elevated plus maze tests were predominantly observed in male mice. Proteomic analysis of microglia isolated from the brains of animals at the end of the 4-month binge EtOH consumption identified 117 and 37 proteins that were significantly up- or downregulated in EtOH-exposed male and female mice, respectively, compared to their pair-fed controls. Protein expression profile-based pathway analysis identified several cellular pathways that may underlie the sex-specific and EtOH withdrawal-associated behavioral abnormalities. CONCLUSION: Taken together, our findings revealed sex-specific changes in EtOH withdrawal-associated behaviors and signaling pathways in the mouse brain microglia and may help advance our understanding of the molecular, cellular, and behavioral changes related to human binge EtOH consumption.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Microglia/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Feminino , Masculino , Camundongos , Microglia/metabolismo , Proteômica , Autoadministração , Caracteres Sexuais , Transdução de Sinais , Síndrome de Abstinência a Substâncias/etiologia
3.
J Comp Neurol ; 525(5): 1094-1108, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27615433

RESUMO

The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Ocitocina/biossíntese , Área Tegmentar Ventral/metabolismo , Animais , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Pharmacol Biochem Behav ; 140: 27-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26519603

RESUMO

The neuropeptide oxytocin interacts with mesolimbic dopamine neurons to mediate reward associated with filial behaviors, but also other rewarding behaviors such as eating or taking drugs of abuse. Based on its efficacy to decrease intake of other abused substances, oxytocin administration is implicated as a possible treatment for excessive alcohol consumption. We tested this hypothesis by measuring ethanol intake in male Sprague-Dawley rats injected with oxytocin or saline using two different ethanol self-administration paradigms. First, a dose-response curve was constructed for oxytocin inhibition of fluid intake using a modified drinking-in-the-dark model with three bottles containing .05% saccharine, 10% ethanol in saccharine, and 15% ethanol in saccharine. Doses of oxytocin tested were 0.05, 0.1, 0.3, and 0.5mg/kg (I.P.). Next, rats received 0.3mg/kg oxytocin preceding operant sessions in which they were trained to lever-press for either plain gelatin or ethanol gelatin in order to compare oxytocin inhibition of ethanol intake versus caloric intake. For the three-bottle choice study, rats consumed significantly less ethanol when treated with the three higher doses of oxytocin on the injection day. In the operant study, 0.3mg/kg oxytocin significantly decreased ethanol gel consumption to a greater extent than plain gel consumption, both in terms of the amount of gel eaten and calories consumed. These data affirm oxytocin's efficacy for decreasing ethanol intake in rats, and confirm clinical studies suggesting oxytocin as a potential treatment for alcoholism.


Assuntos
Dissuasores de Álcool/farmacologia , Consumo de Bebidas Alcoólicas/psicologia , Ocitocina/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Escuridão , Relação Dose-Resposta a Droga , Ingestão de Energia/efeitos dos fármacos , Géis , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração
5.
Eur J Pharmacol ; 718(1-3): 98-104, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24041931

RESUMO

Serotonin (5-HT) 5-HT2C receptor agonists have shown promise as novel alcoholism pharmacotherapies, but developing selective agonists has been problematic. Female Sprague Dawley rats were given ethanol in a palatable gel vehicle during operant sessions. 5-HT2C receptor modulators (Ro60-0175, SB242,084, and (-)-trans-PAT) were administered before operant sessions. As a control for the effects of 5-HT2C receptor agonism on caloric intake, drugs were also tested using non-ethanol containing gelatin. Ro60-0175, a 5-HT2 family receptor agonist, decreased both ethanol and vehicle responding while (-)-trans-PAT, a 5-HT2C receptor agonist with 5-HT2A-2B receptor inverse agonist activity, selectively reduced only ethanol responding. The effect of 5-HT2C receptor agonists on self-administration after reinstatement of ethanol after a three week deprivation was also determined. (-)-trans-PAT eliminated increases in ethanol intake following ethanol deprivation whereas Ro60-0175 had no effect. These results emphasize the need for caloric controls and further support the idea that selective modulation of 5-HT2 family receptors is a potential pharmacotherapeutic approach in the treatment of alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Receptores 5-HT2 de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tetra-Hidronaftalenos/farmacologia , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Aminopiridinas/farmacologia , Animais , Feminino , Indóis/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Agonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tetra-Hidronaftalenos/uso terapêutico
6.
Endocrinology ; 154(7): 2457-67, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23653461

RESUMO

Anxiety disorders are the most common psychiatric illnesses and are associated with heightened stress responsiveness. The neuropeptide oxytocin (OT) has garnered significant attention for its potential as a treatment for anxiety disorders; however, the mechanism mediating its effects on stress responses and anxiety is not well understood. Here we used acute hypernatremia, a stimulus that elevates brain levels of OT, to discern the central oxytocinergic pathways mediating stress responsiveness and anxiety-like behavior. Rats were rendered hypernatremic by acute administration of 2.0 M NaCl and had increased plasma sodium concentration, plasma osmolality, and Fos induction in OT-containing neurons relative to 0.15 M NaCl-treated controls. Acute hypernatremia decreased restraint-induced elevations in corticosterone and created an inhibitory oxytocinergic tone on parvocellular neurosecretory neurons within the paraventricular nucleus of the hypothalamus. In contrast, evaluation of Fos immunohistochemistry determined that acute hypernatremia followed by restraint increased neuronal activation in brain regions receiving OT afferents that are also implicated in the expression of anxiety-like behavior. To determine whether these effects were predictive of altered anxiety-like behavior, rats were subjected to acute hypernatremia and then tested in the elevated plus maze. Relative to controls given 0.15 M NaCl, rats given 2.0 M NaCl spent more time in the open arms of the elevated plus maze, suggesting that acute hypernatremia is anxiolytic. Collectively the results suggest that acute elevations in plasma sodium concentration increase central levels of OT, which decreases anxiety by altering neuronal activity in hypothalamic and limbic nuclei.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Hipernatremia/metabolismo , Hipernatremia/fisiopatologia , Ocitocina/metabolismo , Animais , Ansiedade/etiologia , Hipernatremia/induzido quimicamente , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Restrição Física/fisiologia , Cloreto de Sódio/farmacologia , Núcleo Supraóptico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...